[Contribution No. 507 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company]

Structure and Exchange Processes in Some Inorganic Fluorides by Nuclear Magnetic Resonance¹

By E. L. MUETTERTIES AND W. D. PHILLIPS

Received September 11, 1958

Examination of the chemical shifts and nuclear spin coupling constants of a series of fluorides of the type MF_n, where n = 3, 4, 5, 6, has been made, and the results have yielded details concerning structure of these molecules and their fluorine exchange processes. The spectra of SF₄ and SeF₄ are consistent with C₂, rather than tetrahedral symmetries. Intermolecular fluorine exchange was established by temperature or *p*H dependences of the F¹⁹ spectra of SF₄, SeF₄ and SiF₆⁻. Values of 4.5 ± 0.8 kcal. for ΔE_6 and 10⁷ to 10⁹ sec.⁻¹ for ν_0 were obtained for fluorine exchange in SF₄. Fluorine-bridged structures are suggested as exchange intermediates in the tetrafluorides.

Introduction

Fluorine compounds are particularly suited for nuclear magnetic resonance studies. The F19 nucleus has a high resonance sensitivity, and chemical shifts between fluorine atoms of non-equivalent environments generally are quite large. Furthermore, fluorine forms a class of covalent inorganic compounds that is second only to organometallic compounds in size and diversity. Previous surveys of the F¹⁹ resonances of binary fluorides by Gutowsky and Hoffman² and by Gutowsky, Mc-Call and Slichter³ have significantly contributed not only to the understanding of structure and bonding in inorganic fluorides but also to the elucidation of the nuclear magnetic resonance phenomenon itself. Molecular processes, such as fluorine exchange, have also been detected and studied by nuclear magnetic resonance techniques.⁴

Experimental

Source and Purity of Materials.—All fluoride samples used in this study either were obtained from commercial sources or were prepared by standard literature procedures. Some of these fluorides were found to exhibit spectra sensitive to impurities and these specific cases are described below.

The spectra of all fluorides that are of tetrahedral or octahedral symmetry were found to be relatively insensitive to fluoride impurities such as hydrogen fluoride or arsenic trifluoride. On the other hand, fluorides of lower symmetry tended to undergo a catalyzed exchange in the presence of fluoride impurities. This condition was manifested by a broadening of spectra or collapse or multi-line spectra into single resonances. Those fluorides, e.g., AsF₈, SbF₈, SF₄ and SeF₄, whose spectra proved sensitive to the presence of fluoride impurities, were satisfactorily purified by treatment with or storage over dry sodium fluoride to remove traces of hydrogen fluoride and distillation prior to sampling. Because of the similarity of the boiling points of SF₄ and SOF₂, distillation of SF₄ (invariably contaminated with SOF₂) always yielded samples containing traces to 5% SOF₂. However, it was established that SOF₂ does not detectibly catalyze fluorine exchange in SF₄. Fluorine exchange in SeF₄ was so rapid that an inert solvent, propane, was required to lower the freezing point of the sample to temperatures below -197° in order that fine n.m.r. structure characteristic of the slowly exchanging species could be observed at -200 to -190° . Although gross amounts of IF₈ or BrF₈ did not alter the fine structure of the BrF₈ spectrum, trace amounts of SbF₈ or AsF₈ were sufficient to collapse the quintuplet and doublet of BrF_{b} into a single peak. Iodine pentafluoride behaved similarly and was also found to undergo fast exchange in the presence of hydrogen fluoride (>3% HF) and in the presence of potassium, rubidium or cesium fluorides (>1% MF).

BrF₁ and ClF₃ proved exceptionally sensitive to impurities and required purification by distillation in quartz equipment which was predried under high vacuum at 250°. The distillation cuts were collected and sealed in 2 mm. i.d. quartz capillaries. The melting points found for purified samples of ClF₂ and BrF₃ were -76 and $+8.9^{\circ}$, respectively. Samples of these fluorides purified by conventional techniques and even some samples purified by the above procedure produced single, broad, temperatureinsensitive F¹⁰ resonances.

Arsenic pentafluoride was the only fluoride not purified to a degree deemed satisfactory for the n.m.r. measurements. This pentafluoride was distilled twice at atmospheric pressure, further vacuum distilled and then sampled in the same quartz equipment described above for the halogen trifluorides. Despite the precautions taken, the samples of the pentafluoride invariably contained very fine colloidal particles and these particles are believed to be at least partly responsible for the breadth of the AsFs resonance. The presence of colloidal solids is also believed to be responsible for the slight broadening of the main and satellite peaks in the MoF₆ spectrum. Colloidal solids also tended to be present in samples of BFs and IFs, but distillation and sampling in quartz equipment was sufficient to rigorously exclude colloidal solids from the BFs and IFs samples.

Method.—The fluorine magnetic resonance spectra were obtained using a Varian high resolution n.m.r. spectrometer and electromagnet⁵ at frequencies of 30 and 40 Mc. and fields of 7,500 and 10,000 gauss, respectively. The spectra were calibrated in terms of displacements in cycles per second (c.p.s.) from the fluorine resonance of trifluoroacetic acid. Because of the large chemical shifts found for some of the fluorides, it was necessary to use, as secondary standards, sulfur hexafluoride and molybdenum hexafluoride. Calibration was accomplished by superimposing an audiofrequency on the sweep field to produce side band peaks to the trifluoroacetic acid resonance.⁶

I. Chemical Shifts.— F^{19} chemical shifts obtained for 27 fluorides of the type MF_n , where n =3, 4, 5, 6, are given in Table I. The results of Table I are usually in good agreement with the results of Gutowsky and Hoffman² and Gutowsky, McCall and Slichter³ insofar as they overlap. As Gutowsky and Hoffman pointed out,² the F¹⁹ resonances of binary fluorides exhibit a general paramagnetic shift with increasing electronegativity of the atom to which fluorine is bonded. This general trend led Saika and Slichter⁷ to their treatment of F¹⁹ shifts in terms of the occupancy of the bonding 2 p_z orbital of fluorine. They showed that to a first approximation F¹⁹ chemical shifts (leav-

⁽¹⁾ Presented before the Division of Inorganic Chemistry, National Meeting of the American Chemical Society, San Francisco, California, April, 1958.

⁽²⁾ H. S. Gutowsky and C. J. Hoffman, J. Chem. Phys., 19, 1259 (1951); erratum, 20, 200 (1952).

⁽³⁾ H. S. Gutowsky, D. W. McCall and C. P. Slichter, *ibid.*, **21**, 279 (1953).

⁽⁴⁾ E. L. Muetterties and W. D. Phillips, This Journal, 79, 322 (1957).

⁽⁵⁾ Varian Associates, Palo Alto, California.

⁽⁶⁾ J. T. Arnold and M. E. Packard, J. Chem. Phys., 19, 6108 (1951).

⁽⁷⁾ A. Saika and C. P. Slichter, ibid., 22, 26 (1954).

ing aside considerations of electronic excitation energies) should be a linear function of the ionic character of the M-F bond. It is to be expected that such a treatment should have greatest validity in application to diatomic molecules. Some of the difficulties inherent in the extensions of Saika and Slichter's treatment to polyatomic fluorides is exemplified by the large intramolecular shifts found in ClF₃, SF₄, BrF₅, IF₅ and SbF₅. In these compounds it would appear that other mechanisms, such as magnetic anisotropies discussed by Pople,⁸ are important.

TABLE I

F19	CHEMICAL	Shifts	AND	Spin-Spin	Splittings	IN	Some		
BINARY FLUORIDES									

	Chemical shift		
Com-	$=\frac{Hc-HR}{Hc}\times 104$	M-F Coupling	constant
pound	(ref.: CFaCOOH)	м	(c.p.s.)
NF ₃	-2.19	N ¹⁴	160
C1F	-1.93, -0.810		••
BrF:	-0.543		
PF3	423	P ⁸¹	1441
AsF₃	350	• • •	
SbF ₃	239		••
BF₃	+ . 542	B11	10
SF₄	-1.95, -1.48	•••	••
SeF ₄	-1.41	• • •	
TeF₄	-0.514	• • •	••
CF4	119	• • •	
BF4-	+ .710	• • •	
SiF₄	+ .833	Si ²⁹	178
GeF₄	+ .990	• • •	••
BrF₅	-3.49, -2.19	• • •	
IF_{5}	-1.38, -0.958	• • •	
PF_{5}	-0.0520	\mathbf{P}^{31}	916
AsF₅	113		
SbF₅	+0.0683, $+0.262$, $+0.520$	• • •	
MoF_6	-3.55	M0 ⁹⁵ , M0 ⁹⁷	44
WF6	-2.42	W^{183}	48
SeF6	-1.28	Se77	1400
SF_6	-1.27		
TeF6	-0.206	Te ¹²⁵	3688
		Te ¹²³	3052
PF_6^-	116	P ³¹	710
SiF6	+ .498	Si ²⁹	110
AsF6 ⁻	181	As ⁷⁵	930
SbF₀-	+ .323	Sb121	1843

II. Coupling Constants.—M-F nuclear spin coupling constants were measured for 13 binary fluorides (Table I). A typical spectrum is that of TeF₆ shown in Fig. 1. The intense resonance at 617 c.p.s. is assigned to fluorine atoms bonded to the most abundant tellurium isotope, Te¹²⁸ ($\mu = 0$). The satellites occurring at 2461 c.p.s. and -1227 c.p.s. are assigned to fluorine atoms bonded to the Te¹²⁵ isotope ($\mu = -0.8824$ nuclear magnetons, I = 1/2, abundance = 7.03%), and those at 2143 c.p.s. and -909 c.p.s., to fluorine atoms bonded to the Te¹²⁵ isotope ($\mu = -0.7319$ nuclear magnetons, I = 1/2, abundance = 0.89%). The ratio of Te¹²⁵-F¹⁹ and Te¹²³-F¹⁹ coupling constants (3688/3032 = 1.208) is in good agreement with the ratio of Te¹²⁵ and Te¹²³ nuclear moments (1.206). Similarly, resonance intensities are in semi-quanti-

(8) J. A. Pople, Proc. Roy. Sec. (London), A239, 541 (1957).

tative agreement with the Te^{125}/Te^{123} isotope abundance ratio (7.9:1).

The F^{19} magnetic resonance spectrum of MoF₆ (Fig. 2.) consists of a central, strong resonance ac-

companied by six satellites. The 6840 c.p.s. resonance arises from fluorine atoms bonded to the most abundant molybdenum isotope, Mo⁹⁶ ($\mu = 0$). The six satellites arise from fluorine atoms bonded to the Mo⁹⁵ isotope ($\mu = 0.9098$, I = 5/2, abundance = 15.78%) and the Mo⁹⁷ isotope ($\mu = -0.9289$, I = 5/2, abundance = 9.60%). Because of the similarity of the magnetogyric ratios of the Mo⁹⁶ and Mo⁹⁷ isotopes and the breadths of the F¹⁹ resonances of MoF₆, multiplet components arising from fluorine atoms bonded separately to the Mo⁹⁵ and Mo⁹⁷ isotopes appear coincident.

Gutowsky, McCall and Slichter³ concluded that for a series of compounds involving a given central atom, M, and various numbers of fluorine atoms, the magnitudes of the M–F coupling constants should depend largely on the fractional p-character of the bonding hybrid of M, since the p-component of the hybrid can couple significantly with the 2 p-

Fig. 3.—Temperature dependence of F¹⁹ spectrum of NF₃.

SF4- F¹⁹ 30 MC./SEC.

Fig. 4.—Temperature dependence of F¹⁹ spectrum of SF₄.

orbital of fluorine to yield splitting. They have pointed out that such a trend is observed for the phosphorus fluorides. Si-F coupling constants of 178 and 110 c.p.s. were observed in SiF₄ and Si-F₆⁼, respectively. The bonding hybrids of silicon in SiF₄ and SiF₆⁼ are probably sp⁸ and sp³d², respectively. Thus, the ratio of Si-F splittings in SiF₄ and SiF₆⁼ might be expected to be 3/4:3/6 =1.5, in fair agreement with the observed ratio of splittings which is 1.6.

III. Temperature Dependence of the \mathbf{F}^{19} Spectrum of \mathbf{NF}_{3} .—The temperature dependence of the \mathbf{F}^{19} spectrum of \mathbf{NF}_{3} is presented in Fig. 3. The triplet structure to the \mathbf{F}^{19} resonance observed at room temperature is seen to collapse to a singlet at temperatures below about -180° . This behavior is similar to that observed by Roberts⁹ for protons bonded to nitrogen in amines and seems to be due to effects of quadrupole relaxation on the \mathbf{N}^{14} nucleus.

Pople¹⁰ recently has discussed effects of quadrupole relaxation on nuclear resonances and has shown that fluorine (or proton) multiplet structure due to splittings by the N¹⁴ nucleus (I = 1) will disappear when τ , the lifetime of a given N¹⁴ nuclear spin state, is given by

$\tau \approx 5/(2\pi J)$

where J is the N¹⁴-F¹⁹ coupling constant in c.p.s. Since J = 160 c.p.s. for NF₈, the lifetime of a given N^{14} nuclear spin state must be less than about 10^{-3} sec. below -180° .

IV. Fluorine Exchange in SF₄ and SeF₄.—Recently, Cotton, George and Waugh¹¹ have concluded from the low temperature F¹⁹ spectrum of SF₄ that the molecule possesses $C_{2\nu}$ rather than tetrahedral symmetry. A similar conclusion regarding the structure of SF₄ was reached earlier by Dodd, Woodward and Roberts¹² from analysis of the vibrational spectrum of the molecule. Cotton, George and Waugh¹¹ further analyzed the temperature dependence of the F¹⁹ spectrum of SF₄ in terms of fluorine exchange. An independent study of the kinetics of fluorine exchange in SF₄ is presented below.

The temperature dependence of the F¹⁹ spectrum of SF₄ is shown in Fig. 4. The width at half maximum of the 23° F¹⁹ resonance of SF₄ is about 90 c.p.s. This width increases as the temperature of the sample is reduced, reaching a value of about 1300 c.p.s. at -45° . At -47° , the single, broad F¹⁹ resonance of SF₄ is replaced by two resonances of equal intensity that sharpen at temperatures below -47° and become resolved triplets at -85° . The sharp, extraneous peak in the spectra of Fig. 4 is due to $\sim 5\%$ SOF₂ occurring as impurity in our SF₄ samples.

The temperature dependence of the F¹⁹ spectrum (11) F. A. Cotton, J. W. George and J. S. Waugh, J. Chem. Phys., 28, 994 (1958).

⁽⁹⁾ J. D. Roberts, THIS JOURNAL, 78, 4495 (1956).
(10) J. A. Pople, Molecular Physics, 1, 168 (1958).

⁽¹²⁾ R. E. Dodd, L. A. Woodward and H. L. Roberts, Trans. Faraday Soc., 52, 1052 (1955).

of SF₄ is ascribed to exchange of fluorine atoms between the two non-equivalent fluorine environments of the pseudo trigonal bipyramid. The data were treated by the method of Gutowsky and Holm¹³ in which the observed separation between the chemically shifted resonances, $\delta \omega_e$, below -47° is given by

$$\delta\omega_{\rm e} = \left(1 - \frac{2}{\tau^2 \delta \omega^2}\right)^{1/2} \delta\omega$$

where τ is the average lifetime of fluorine nuclei in the two environments and $\delta\omega$ is the chemical shift in the absence of exchange effects, e.g., $\tau\delta\omega >>$ $\sqrt{2}$. If fluorine exchange in SF₄ is assumed to be first order (intramolecular), the treatment of rate processes of Gutowsky and Holm¹³ yields for SF₄ (Fig. 5) an activation energy of 4.5 ± 0.8 kcal. and a frequency factor of 10⁷ to 10⁹ sec.⁻¹ for fluorine exchange. If the exchange is not first order as assumed in the foregoing treatment, the frequency factor given above will, of course, be altered but the activation energy will remain unchanged. The value of 4.5 ± 0.8 kcal. is in good agreement with that of 4 ± 1 kcal. obtained by Cotton, George and Waugh.¹¹

Fig. 5.—Determination of E_a and ν_0 for fluorine exchange in SF₄.

Some attempts were made to determine the order and mechanism of exchange in SF₄. A sample of SF₄ was sealed off in a 5 mm. o.d. "Pyrex" n.m.r. tube containing finely divided glass fragments. The increase of wall area by at least a factor of 100 did not affect the -47° temperature of transition between "slow" and "fast" fluorine exchange in SF₄. Thus, a wall reaction can be ruled out as the exchange mechanism.

If fluorine exchange in SF₄ proceeds by a secondorder process, *i.e.*, through dimer or ionic intermediates, the average time between fluorine exchanges should be inversely proportional to SF₄ concentration. It was found that the temperature required to collapse the two resonances of SF₄ to a single peak for various concentrations of

(13) H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1128 (1956). SF₄ in carbon tetrachloride, toluene or diethyl ether ranged from 25 to 60° above the -47° transition temperature observed for pure SF₄. Although concentrations of SF₄ in the solution studies were not sufficiently well known to establish the precise order of the SF₄ fluorine exchange reaction, it nevertheless is clear that exchange is not first order but is second or higher order.

Results of this study do not permit discrimination between ionic and associative mechanisms but dissociation of the type $SF_4 \rightleftharpoons SF_3 + F_2$ can be rigorously ruled out because the solvents were not fluorinated by SF4. The temperature required to collapse the triplet fine structure of solutions (mole fraction ~ 0.5) of SF₄ in carbon tetrachloride, toluene, perfluorodimethylcyclohexane, acetonitrile, diethyl ether, ethyl acetate or tetramethylene sulfide ranged from -15 to $+15^{\circ}$ as compared with the temperature of -85° for pure SF₄. A correlation did not appear to exist between dielectric constant of the medium and the observed exchange rate. This, however, does not rule out an ionization mechanism since nothing is known about solvation effects for possible ionic species. However, recent studies by Hoffman, Holder and Jolly¹⁴ have indicated that liquid SbF₅ is associated to at least dimers and probably to cyclic or linear polymers through fluorine bridges and that such bridging could be acting as the mechanism for fluorine exchange observed also in SbF5.15 An intermediate formed by association of SF4 to dimers (Fig. 6) or polymers through fluorine bridges could also be effective in producing fluorine exchange in SF₄.

Fig. 6.—Possible SF₄ dimer intermediate in fluorine exchange.

The F¹⁹ magnetic resonance spectrum of SeF₄ consists of a single peak above its melting point of -9° . A solution of SeF₄ in propane displayed at $\sim -200^{\circ}$ two fluorine resonances that broadened and merged when the temperature was raised

(14) C. A. Hoffman, B. E. Holder and W. L. Jolly, J. Phys. Chem., 62, 364 (1958).

(15) Of the pentafluorides investigated, only SbFs, ¹⁴ BrFs⁵ and IFs⁵ exhibited fine structure due to expected non-equivalence of fluorine environments in these molecules. The pentafluorides of niobium and tantalum in the molten state (>75 and 97°, respectively) exhibited single resonances. Absence of fine structure may be due to fluorine exchange, and it is suggested that fluorine bridge-bonding similar to that found in SbFs contributes to the lattice energies and to the short-range order in the melts of NbFs and TaFs. The spectrum of PFs was found temperature insensitive¹ thus ruling out fluorine exchange as the explanation for the apparent equivalence of fluorine environments. It has been suggested by G. A. Williams (University of Illinois Thesis, 1956) that apparent equivalence in PFs is a result of $J \gg \delta$ where J and δ are, respectively, the expected coupling constant and the chemical shift between non-equivalent fluorine atoms.

above $\sim -190^{\circ}$. It was not possible to cool the sample sufficiently to resolve the expected triplet fine structure of the two resonances. In any case, this behavior is similar to that of SF_4 and indicates that ${\rm SeF}_4$ also possesses $C_{2\nu}$ symmetry and undergoes fluorine exchange at a much more rapid rate than does SF_4 . Tellurium tetrafluoride, a relatively high-melting solid,¹⁶ gave a single, fairly sharp fluorine resonance in toluene solution down to the freezing point ($\sim -100^{\circ}$) of the solution. A lower melting solvent for TeF₄ was not found. The data suggest that the rates of fluorine exchange in the Group VI tetrafluorides follow the order: $SF_4 <$ $SeF_4 < TeF_4$. This order is the same as the order of increasing molecular association (as evidenced by melting and boiling points) for these fluorides and is consistent with the suggested association mechanism for fluorine exchange.

V. Fluorine Exchange in Fluoroanions.-The F¹⁹ magnetic resonance spectrum of an aqueous solution of $(NH_4)_2SiF_6$ consists of an intense resonance arising from fluorine atoms bonded to the Si²⁸ isotope ($\mu = 0$) and two weak satellites arising from fluorine atoms bonded to the Si²⁹ isotope ($\mu = -0.5549$ nuclear magnetons, I =1/2, abundance = 4.70%). The appearance of the satellites to the F^{19} resonance of SiF_6 indicates that exchange of fluorine atoms between anions must be proceeding at an average rate of less than about 10^3 sec.⁻¹ in this solution. Separate F¹⁹ resonances are observed for F⁻ and SiF₆⁻⁻ in aqueous solutions containing NH_4F and $(NH_4)_2$ -SiF₆ as well as Si²⁹ satellite resonances to the SiF₆⁼ resonance. This observation indicates that fluorine exchange between SiF_6 and F-, if existent, is a slow process.

The F¹⁹ resonance of an aqueous solution of MgSiF₆ is broad and the Si²⁹–F¹⁹ fine structure is not observable. Slight acidification of the $(NH_4)_{2^-}$ SiF₆/H₂O solution by HCl produces a similar broadening of the F¹⁹ resonance of SiF₆⁻⁻. These results are consistent with a mechanism involving acid catalysis of fluorine exchange between SiF₆⁻⁻ species, inasmuch as Mg⁺⁺ produces an acid solu-

(16) The large lattice energy of solid TeF₄ (m.p. >200°) relative to solid SF₄ (m.p. -121°) and SeF₄ (m.p. 9.5°) may in fact be a reflection of *strong* fluorine bridge bonds that create a "polymeric" type of structure, *e.g.*, a cyclic tetramer with *cis* fluorine bridge bonds. tion by hydrolysis equivalent to direct acidification. A possible mechanism for fluorine exchange between SiF_6^- ions in aqueous solutions suggested by these qualitative observations is through an intermediate such as $F_5Si^- \cdot F \cdot H^+$ involving strong H-F bonding

The F¹⁹ resonance of an aqueous solution of ammonium hexafluorophosphate consists of a strong fluorine resonance that is split into a doublet by spin-spin coupling between F^{19} and P^{31} (I =1/2). Similarly, the spectrum of an aqueous solution of silver hexafluoroarsenate consists of a strong fluorine resonance that is split into a quadruplet by coupling between F^{19} and As^{75} (I = 3/2). These spectra are insensitive to pH (2 to 10) and to temperature (20 to 80°) indicating that, in agreement with literature reports,17,18 these anions are resistant to hydrolysis and to fluorine exchange. The observed fine structure indicates that hydrolysis or exchange of fluorine atoms between anions must be proceeding at a rate less than $\sim 10^2$ sec.⁻¹ for PF₆⁻ and AsF₆⁻.

The Sb¹²¹ spectrum of aqueous KSbF₆ consists of a strong resonance split into a septuplet¹⁹ due to spin–spin coupling between F¹⁹ and Sb¹²¹. The F¹⁹ resonance of SbF₆⁻ consists of a single, broad resonance in which absence of detail probably is ascribable to overlap of multiplet components arising from Sb¹²¹ and Sb¹²⁸ splittings. The SbF₆⁻ anion like the AsF₆⁻ and PF₆⁻ anions is not susceptible to fast exchange ($\tau > 10^{-4}$ sec.) of fluorine atoms between anions.

WILMINGTON, DELAWARE

⁽¹⁷⁾ H. M. Dess and R. W. Parry, THIS JOURNAL, 79, 1589 (1957).
(18) J. H. Simons, "Fluorine Chemistry," Vol. I, Academic Press Inc., New York, N. Y., 1950, p. 166.

⁽¹⁹⁾ S. S. Dharmatti and H. E. Weaver, Jr., Phys. Rev., 87, 675 (1952).